12 research outputs found

    The aquaculture supply chain in the time of covid-19 pandemic: vulnerability, resilience, solutions and priorities at the global scale

    Get PDF
    The COVID-19 global pandemic has had severe, unpredictable and synchronous impacts on all levels of perishable food supply chains (PFSC), across multiple sectors and spatial scales. Aquaculture plays a vital and rapidly expanding role in food security, in some cases overtaking wild caught fisheries in the production of high-quality animal protein in this PFSC. We performed a rapid global assessment to evaluate the effects of the COVID-19 pandemic and related emerging control measures on the aquaculture supply chain. Socio-economic effects of the pandemic were analysed by surveying the perceptions of stakeholders, who were asked to describe potential supply-side disruption, vulnerabilities and resilience patterns along the production pipeline with four main supply chain components: a) hatchery, b) production/processing, c) distribution/logistics and d) market. We also assessed different farming strategies, comparing land- vs. sea-based systems; extensive vs. intensive methods; and with and without integrated multi-trophic aquaculture, IMTA. In addition to evaluating levels and sources of economic distress, interviewees were asked to identify mitigation solutions adopted at local / internal (i.e., farm-site) scales, and to express their preference on national / external scale mitigation measures among a set of a priori options. Survey responses identified the potential causes of disruption, ripple effects, sources of food insecurity, and socio-economic conflicts. They also pointed to various levels of mitigation strategies. The collated evidence represents a first baseline useful to address future disaster-driven responses, to reinforce the resilience of the sector and to facilitate the design reconstruction plans and mitigation measures, such as financial aid strategies.publishe

    The synergistic impacts of anthropogenic stressors and COVID-19 on aquaculture: a current global perspective

    Get PDF
    The rapid, global spread of COVID-19, and the measures intended to limit or slow its propagation, are having major impacts on diverse sectors of society. Notably, these impacts are occurring in the context of other anthropogenic-driven threats including global climate change. Both anthropogenic stressors and the COVID-19 pandemic represent significant economic challenges to aquaculture systems across the globe, threatening the supply chain of one of the most important sources of animal protein, with potential disproportionate impacts on vulnerable communities. A web survey was conducted in 47 countries in the midst of the COVID-19 pandemic to assess how aquaculture activities have been affected by the pandemic, and to explore how these impacts compare to those from climate change. A positive correlation between the effects of the two categories of drivers was detected, but analysis suggests that the pandemic and the anthropogenic stressors affect different parts of the supply chain. The immediate measurable reported losses varied with aquaculture typology (land vs. marine, and intensive vs. extensive). A comparably lower impact on farmers reporting the use of integrated multitrophic aquaculture (IMTA) methods suggests that IMTA might enhance resilience to multiple stressors by providing different market options under the COVID-19 pandemic. Results emphasize the importance of assessing detrimental effects of COVID-19 under a multiple stressor lens, focusing on areas that have already locally experienced economic loss due to anthropogenic stressors in the last decade. Holistic policies that simultaneously address other ongoing anthropogenic stressors, rather than focusing solely on the acute impacts of COVID-19, are needed to maximize the long-term resilience of the aquaculture sector.publishe

    On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves

    Get PDF
    Mutualistic associations between bacteria and eukaryotes occur ubiquitously in nature, forming the basis for key ecological and evolutionary innovations. Some of the most prominent examples of these symbioses are chemosynthetic bacteria and marine invertebrates living in the absence of sunlight at deep-sea hydrothermal vents and in sediments rich in reduced sulfur compounds. Here, chemosynthetic bacteria living in close association with their hosts convert CO2 or CH4 into organic compounds and provide the host with necessary nutrients. The dominant macrofauna of hydrothermal vent and cold seep ecosystems all depend on the metabolic activity of chemosynthetic bacteria, which accounts for almost all primary production in these complex ecosystems. Many of these enigmatic mutualistic associations are found within the molluscan class Bivalvia. Currently, chemosynthetic symbioses have been reported from five distinct bivalve families (Lucinidae, Mytilidae, Solemyidae, Thyasiridae, and Vesicomyidae). This brief review aims to provide an overview of the diverse physiological and genetic adaptations of symbiotic chemosynthetic bacteria and their bivalve hosts

    Collection of the clam Anodontia edentula in mangrove habitats in Panay and Guimaras, central Philippines

    No full text
    The mangrove clam Anodontia edentula is highly prized in the Philippines for its flavor and large size. Because this infaunal species is found down to one meter deep in mangrove areas, harvesting the clam reportedly damages mangrove stands. To evaluate such reports, a survey of collection methods was undertaken in Panay and Guimaras, central Philippines in August 1997-December 1999. Host to chemosynthetic bacterial symbionts that utilize sulfide as energy source, A. edentula are strategically situated in sulfide-rich anoxic substrates but also gain access to oxygenated seawater through a ventilation burrow or tube. By locating the opening of this burrow, collectors can detect the presence of a buried clam and harvest it nondestructively with a blade or bare hands. In contrast, the indiscriminate tilling of wide mangrove areas can damage mangrove plants. Most collectors were 40-45 years old with 22-30 years collection experience, married with 5-7 children, and had low educational attainment. They sold clams directly in the local markets or through middlemen (to restaurants and beach resorts); sales provided from 10% to 100% of daily family income. Collectors complained of decreasing clam sizes and numbers and the physically strenuous work of collecting

    Mangroves and shrimp pond culture effluents in Aklan, Panay Is., central Philippines

    No full text
    The capacity of a natural mangrove system in Ibajay, Aklan province, central Philippines to process shrimp pond culture effluents was assessed through analysis of mangrove community structure and 24-hr monitoring of water quality parameters (NH3-N, NO3-N, PO4-P, sulfide, and total suspended solids). Results from the latter showed decreased nutrient levels within 6 hrs after daytime draining of effluents into the mangrove stand, but only nitrate reduction was statistically significant. Based on nitrate loss, volume of water drained, mangrove area, and shrimp farming data (e.g., N loss from ponds, feed composition, feeding rate), calculations show that 1.8–5.4 ha of mangroves are required to remove nitrate wastes from 1 ha of shrimp pond. N uptake by the mangrove macroflora was supported by data showing longer nipa palm leaflets and faster mangrove seedling growth in the experimental mangrove receiving effluents compared to a control mangrove, but not from mangrove biomass measurements. These results have significant implications for the Philippine brackishwater pond culture industry to conserve or rehabilitate mangroves as potential pond biofilters, to implement legally mandated 20- and 50-m greenbelts, and to reverse the national 0.5 ha mangrove: 1.0 ha pond ratio.This study was funded by the Government of Japan Trust Fund for the Mangrove-Friendly Shrimp Culture Project. Grateful thanks are extended to Bugtong Bato, Ibajay Barangay Head N. Soliva for facilitating field arrangements, A. Traje for assistance in the pond and mangrove work, N. Kautsky and M. Beveridge for helpful comments on the manuscript, and J. Binas

    Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success

    Get PDF
    Vegetated marine and freshwater habitats are being increasingly lost around the world. Habitat restoration is a critical step for conserving these valuable habitats, but new approaches are needed to increase restoration success and ensure their survival. We investigated interactions between plants and bivalves through a review and analysis of 491 studies, determined the effects, mechanisms and key environmental variables involved in and driving positive and negative interactions, and produced guidelines for integrating positive interactions into restoration efforts in different habitats. Fifty per cent of all interactions (both correlative and experimental studies) were positive. These were predominant between epifaunal bivalves and plants in all habitats, and between infaunal bivalves and plants in subtidal habitats. Plants primarily promoted bivalve survival and abundance by providing substrate and shelter, while bivalves promoted plant growth and survival by stabilizing and fertilizing the sediment, and reducing water turbidity. The prevalence of positive interactions increased with water temperature in subtidal habitats, but decreased with water temperature in intertidal habitats. The subset of studies conducted in a restoration context also showed mostly positive interactions. Twenty-five per cent of all interactions were negative, and these were predominant between plants and infaunal bivalves in intertidal habitats, except sulphide-metabolizing bivalves, which facilitated plant survival. Interactions involving non-native species were also mostly negative. Synthesis and applications. Promoting facilitative interactions through plant-bivalve co-restoration can increase restoration success. The prevalence of positive interactions depends on habitat and environmental conditions such as temperature, and was especially important in subtidal habitats (involving both infaunal and epifaunal bivalves) and in intertidal habitats (involving only epifaunal bivalves). Thus sites and species for co-restoration must be carefully chosen to maximize the chances of success. If done properly, co-restoration could increase initial survival, persistence and resilience of foundation species, and promote the recovery of associated biodiversity and ecosystem services

    The Synergistic Impacts of Anthropogenic Stressors and COVID-19 on Aquaculture: A Current Global Perspective

    Get PDF
    The rapid, global spread of COVID-19, and the measures intended to limit or slow its propagation, are having major impacts on diverse sectors of society. Notably, these impacts are occurring in the context of other anthropogenic-driven threats including global climate change. Both anthropogenic stressors and the COVID-19 pandemic represent significant economic challenges to aquaculture systems across the globe, threatening the supply chain of one of the most important sources of animal protein, with potential disproportionate impacts on vulnerable communities. A web survey was conducted in 47 countries in the midst of the COVID-19 pandemic to assess how aquaculture activities have been affected by the pandemic, and to explore how these impacts compare to those from climate change. A positive correlation between the effects of the two categories of drivers was detected, but analysis suggests that the pandemic and the anthropogenic stressors affect different parts of the supply chain. The immediate measurable reported losses varied with aquaculture typology (land vs. marine, and intensive vs. extensive). A comparably lower impact on farmers reporting the use of integrated multitrophic aquaculture (IMTA) methods suggests that IMTA might enhance resilience to multiple stressors by providing different market options under the COVID-19 pandemic. Results emphasize the importance of assessing detrimental effects of COVID-19 under a multiple stressor lens, focusing on areas that have already locally experienced economic loss due to anthropogenic stressors in the last decade. Holistic policies that simultaneously address other ongoing anthropogenic stressors, rather than focusing solely on the acute impacts of COVID-19, are needed to maximize the long-term resilience of the aquaculture sector.publishedVersio
    corecore